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Abstract— The efficient transmission of TCP traffic over
OBS networks is a challenging problem, due to the high
sensitivity of TCP congestion control mechanism to losses.
In this work, we propose solutions to this problem,
through the burst assembly and scheduling mechanism of
OBS. We investigate and propose algorithms to achieve
performance enhancements for TCP traffic by taking into
account TCP state information. We prove our claims with
references to well-established TCP models, and validate
the proposed algorithms through simulations.

Index Terms— TCP scheduling, burst Scheduling, burst
assembly, optical burst Switching, preemptions, class of
service.

I. INTRODUCTION

ptical burst switching (OBS) [1] has been introduced to

combine both strengths of packet and circuit switching

and is the most promising technology for next generation
optical Internet. An OBS network consists of a set of optical
core routers, with edge routers at its edges that are responsible
for the burst assembly/disassembly function. In OBS
networks, an optical burst is constructed at the network edge,
from an integer number of variable size packets. Various burst
assembly and burst scheduling algorithms have been proposed
in the bibliography, but the efficient transmission of TCP over
OBS networks remains an open problem, since the (relatively)
high packet loss ratio experienced in OBS networks is
incompatible with TCP congestion control mechanism.
Performance of TCP over OBS networks has been studied in
previous works, [2],[3], where it has been observed that the
burst losses have significant impact on the TCP end-to-end
performance. In particular, TCP transmission over OBS
networks suffers from the high number of segments which are
lost, upon a single burst drop. This typically results in many
sources timing out and which will subsequently enter a slow
start phase. Such an event, will significantly delay their
transfers.

The assembly process also affects TCP end-to-end
performance, by introducing an unpredictable delay that
challenges the window mechanism used by TCP protocol for
congestion control. Short assembly times reduce the total end-
to-end delay associated with the round trip-time, and thus they
are more appropriate for slow flows [4]. Long assembly times,
are more efficient especially for fast TCP flows since they
allow the transmission of multiple segments per burst and
achieve a high DFL gain [3]. However, this throughput gain

Digital Object Identifier: 10.4108/ICST.BROADNETS2009.7250
http:/ldx.doi.org/10.4108/ICST.BROADNETS2009.7250

may be compensated by the large increased delay. Useful
insights on TCP traffic statistics is given in,0,[5], while in [6]
the estimated burst loss probability is combined with the TCP
sending rate, used as the input load over a single link in the
network.

Scheduling algorithms are vital for sustaining TCP
throughput. OBS, as a real-time system suffers from a very
bad worst case performance [7], as QoS provisioning in one-
way signaling protocols like JET is a challenging problem,
given the lack of buffering at the core. Bursts cannot be stored
in intermediate nodes, so contention resolution options are
limited, and priority inversions among high-priority and low-
priority bursts are difficult to tackle. This is because an online
OBS scheduling algorithms (like, LAUC-VF) have no
information about future bursts, and thus inevitably makes
non-optimal decisions regarding channel selection and burst
dropping. For example, if the control packet, of a low priority
burst arrives at an OBS node before the control packet of a
higher priority overlapping burst, LAUC-VF has no means to
give priority to the latter [8].

In this work, we investigate ways to achieve performance
enhancements for TCP traffic, in terms of throughput
maximization and fairness, by taking into account intrinsic
details of TCP protocol in the burst assembly and scheduling
process. We design TCP-friendly burst assembly and
scheduling protocols and test, whether these can achieve a
significant performance advantage. In particular, we propose a
new multi-class TCP-aware preemptive scheduling scheme
that supports strict priorities and we perform an in-depth study
through mathematical modeling and simulation. For their
evaluation, we have performed some real-world experiments
using Network Simulator (ns-2) environment with synthetic
traffic representing typical internet use, combining long-lived
TCP connections (ftp transfers) and short-lived connections
(mostly http traffic or small file transfers).

The rest of the paper is organized as follows: Section II
presents a new congestion window-based burst assembly
schemes, and provides insight on the interaction between TCP
congestion control, OBS scheduling and burst assembly
algorithms. Section III presents a multi class TCP-aware
preemptive scheduling algorithm, which provides QoS
guarantees to TCP flows according to their throughput
characteristics. Its efficiency is evaluated experimentally,
through ns-2 simulations. Finally Section IV concludes the

paper.



II. CONGESTION WINDOW BASED ASSEMBLY SCHEMES

Based on previous research work on TCP over OBS [3], it
is clear that fixed timer-based burstifiers are not appropriate,
since they do not provide maximum performance for all TCP
flows, but only optimal performance for individual flows with
similar characteristics (i.e. file size, size of congestion
window, etc.). The performance of a TCP flow over OBS
networks depends not only on burst drop probability, but also
on the assembly algorithm used, the flow access rate and the
TCP implementation. Steady state performance of TCP flows
depends on congestion window evolution, while TCP send

cwnd

rate is bounded by . TCP congestion window evolution

on OBS networks is affected by burst drop probability p and
Delay First Loss (DFL) gain. Due to the strong correlation of
TCP segment losses, in practice the average drop probability
of a single segment is smaller than burst drop probability, and
ranges between p (for slow flows) to (1 — (1 — p)?) for fast
flows 0. Thus, the period between segment losses is increased,
which in turn enables TCP to reach a larger sending window.

A. Congestion-window based burst assembly algorithm

DFL gain, as described in [2] increases proportionally to
the square root of the number of segments per burst, so large
assembly timers will generally lead to increased correlation
gains. On the other hand, RTT increases linearly with the
assembly timer, as RTT = RTT, + 2Tyax. Thus, there exists a
trade-off between maximizing DFL gain and minimizing delay
penalty (denoted by RTT) for a specific TCP flow, based on
its congestion window and there is an optimal assembly timer
that maximizes its TCP throughput. On these grounds, multi-
class congestion window based assembly scheme was
proposed in [4], which dynamically assigns TCP flows to
burst assembly classes with different timers, according to their
TCP congestion window, as denoted by Eq. (1).

1msec if window < B
Smsec if B < window < C
10msec if window > B

Eg. (1)

Tassembly time =

According to Eq. (1), TCP flows are dynamically assigned
to classes on each burstification cycle, based on the (static)
congestion window limits of C and B (in terms of segments).
This scheme, albeit maximizing throughput of TCP flows for a
given burst loss ratio, it also increases contention, since using
multiple burtifiers per destination increases the number of
bursts transmitted. In this work, we extend and revise the
abovementioned burst assembly scheme, with an aim to
reduce the contention induced by multiple burstifiers and
focus on fairness issues as well as TCP throughput
maximization. Our first step towards this direction is to
serialize bursts from different classes. Bursts from different
traffic classes of the same burstifier, are transmitted in an
interleaved fashion (see Figure 1), and thus assembly timers
have to be integer multiples of each other. At the same time,
buffering in the electronic domain is employed at the edge, to
prevent contention among different traffic classes at the same
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edge node (i.e. the burstifier will never send two bursts that
will contend with each other at the edge).

In what follows, we will investigate how it is possible to
achieve further performance enhancements for TCP traffic (in
terms of throughput maximization and fairness) if we take into
account some intrinsic implementation, independent details of

TCP (like TCP window state).
«—4ms timer—

«-1ms timer—
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Figure 1: Interleaved transmission of bursts in a multi-class burstifier

In this work, we used only two classes per burstifier, which
provide a good compromise between maximizing throughput
and keeping contention at acceptable levels. We used one low-
latency traffic class, which features a short timer to help the
congestion window to evolve fast. The other traffic class has a
large assembly timer for flows that have a large enough
congestion window, to support a large DFL gain. However,
the basic design goal of the proposed burst assembly scheme
is to limit the number of segments in the class with the short
timer, to avoid contention to the “normal” priority class,
which still contains the majority of TCP traffic. In the next
section, we provide a solution to the problem of which
segments should be assigned to the low-latency class, using
some well-established TCP protocol analytic models.
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Figure2: TCP Congestion window evolution at the steady state

B. Theoretical Analysis

In this section, using some well-established TCP models
[10] we provide a solution to the problem of choosing a
minimum number of TCP segments to be assigned to the low-
latency class, for maximizing TCP throughput, without
inducing too much contention to the “bulk” TCP traffic class.
First, we present the principle of operation for the TCP
protocol, focusing on TCP steady state (see Figure 2). A TCP
flow starts its data transmissions at an initial slow start phase,
followed by a steady-state phase. TCP tries to capture the
maximum available bandwidth during the initial slow start
phase, by doubling the TCP window (and the sending rate as a
result) on every RTT. At the end of the slow start phase,
which is indicated by the first packet loss, TCP goes into the
steady-state. Steady-state of a TCP flow comprises of a series
of timeout periods (TO), each of which is composed of a slow
start phase and multiple triple duplicate periods (TDP).
During the slow start phase the TCP window increases linearly



(i.e. it is incremented by one segment per RTT) and it is
divided by two per every packet loss.

The idiosyncrasies of TCP protocol and especially its
conservative approach to avoid congestion (dividing the
sending rate by two after just one packet loss) make it
impossible for the TCP protocol to sustain a large congestion
window, unless the packet loss ratio is unrealistically small.

Table I: Steady State TCP window for various packet loss probabilities.

Packet_loss tcp_window
107-2 8
107-3 25
10n-4 80
107-5 252
107-6 800
101-7 2530
107-8 8000
107-9 25298
107-10 80000

According to the TCP steady state model [10] for a given
packet loss ratio, TCP steady state window converges to W,
for packet drop rate of p, see Table I for some numerical

examples.
w, = V15 /\/5

In OBS networks, where burst losses happen due to
contention, even at light load conditions, packet loss cannot be
arbitrarily small (typically it is in the range of 10™ to 107).
Thus, TCP flows cannot sustain large congestion windows. In
fact, congestion windows larger than W, are not sustainable,
while smaller ones are limiting the throughput potential of the
flows. Thus, to achieve TCP throughput maximization, we
should minimize the time needed for the flows to reach W, and
then allow them to oscillate between Wy/2and W,. At the point,
where a TCP window exceeds W), (and provided that the burst
loss probability is relatively small), then we can safely assume
that it will be large enough to better be served by a larger
assembly timer, which will provide a higher DFL gain. Thus,
in the proposed scheme, when the window of TCP flows that
are in the slow start phase, exceed W), then these flows are
assigned to the “normal” assembly class, which features a
larger assembly timer than that of the low-latency class.
Further, they will only return to the low-latency class after a
possible time-out event. In this way, the low-latency class has
a relatively light load (our experiments showed that typically
less than 10% of flows fall in this category at the steady state).
Consequently, the risk of increasing contention to the TCP
flows that are at the congestion avoidance phase is effectively
avoided.

Finally, since in an OBS network burst drop probability is
not equivalent to packet loss probability, a good
approximation of steady state window W, is derived from Eq.
3, [2]. This formula takes into account DFL gain experienced

Eq. (2)
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from TCP flows in OBS networks, though parameter S (where
S is the ratio of segments/burst).

—_V3=*S
Wy = /7 Eq. 3)

III. MULTI CLASS PREEMPTIVE TCP-AWARE SCHEDULING

In the previous sections it has been stressed, how critical
the slow start phase is for the evolution and sustainment of a
high TCP throughput. A single packet loss at the very early
stages of the slow start phase will abruptly end the exponential
evolution of TCP congestion window, driving the TCP flow to
the congestion avoidance phase. This causes fairness issues, as
some “unlucky” TCP flows with losses at an early round, will
have a much worse performance, requiring significantly more
time to reach steady state window. Therefore and in order to
ensure fairness among all the active flows that compete for
bandwidth in a burst, it is vital to also provide prioritized
delivery (QoS) to the low-latency class.

Therefore, in order to satisfy both design goals, i.e. ensuring
fairness and maximizing throughput, we propose the use of a
TCP-aware scheduling algorithm, which can provide QoS
guarantees to a low low-latency class, reserved for TCP
segments that have been marked as critical for maximizing
throughput and ensuring fairness among the active TCP flows.
However, QoS provisioning in OBS networks is hard, since
due to the lack of buffering at the core, priority inversions
among high-priority and low-priority bursts are difficult to
handle. One very effective technique proposed in the
bibliography for strict priority provisioning in OBS networks
is preemptive scheduling. Preemption is a well known
technique that adds flexibility to the burst scheduling process,
allowing the re-arrangement of already scheduled bursts, thus
making QoS differentiation possible. In the next section, we
present the principal of operation of PLAUC-VF scheduling
algorithm, [9], which is a preemptive variation of LAUC-VF.

A. Strict priority provisioning with PLAUC-VF

In this section, we describe the principle of operation of
PLAUC-VF, a preemptive scheduling algorithm based on
LAUC-VF. PLAUC-VF stores burst length, class of service,
as well as a unique burst identifier for all scheduled bursts.
This information is typically required for preemptive
algorithms to base preemption decisions, and make the
reconfiguration of OBS nodes possible. The PLAUC-VF
variation used in this paper has the ability to keep track of and
preempt the two most recent scheduled bursts. Thus, the
channel selection phase remains identical to the one used in
LAUC-VF, ensuring that on average the time complexity
remains low. If the channel selection fails, then the more
computationally demanding preemption phase follows. When
a new reservation request arrives, the preemption-capable
scheduling unit follows these steps (see Figure 3 for an
algorithm illustration):

1. First, it scans all channels for an idle period to schedule
the burst.



2. If voids are found in more than one channel, the one that
minimizes the remaining idle period is chosen, as in
LAUC-VF.

3. If no voids are found, we conclude that there is at least
one overlapping burst in each channel. Then, the
scheduling algorithm iterates over overlapping bursts,
and decides whether one of them has to be preempted, in
order to free resources for the newly arrived burst. The
decision is based on the priority class that the burst
belongs to. As an example, if we assume that in Figure 3,
Burst-0 belongs to the “normal” priority class, while the
reservation request belongs to the high priority class,
then Burst 0 will be preempted and the new burst would
be scheduled in its place.
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Figure 3: Illustration of PLAUC-VF algorithm

B. Experimental Setup

The preemptive scheduling algorithm was evaluated
through experimentation, in the Network Simulator (ns-2)
environment. The experiments were carried out on the NSF
network topology, with 8 edge and 6 core nodes whereas each
link was employing two wavelengths at 10Gbps. It is assumed
that edge nodes have sufficient resources to store bursts and
losses occur only in the core. Access rate of TCP agents to the
OBS edge was set to 100Mbps. A realistic scenario of typical
internet traffic was modeled, including both long lived TCP
connections, that were transmitting data throughout the
simulation cycle and short-lived TCP connections, which were
only active for the duration of a single file transfer. Short-lived
TCP arrivals (file transfers) were modeled with an exponential
arrival process with A=50 flows/sec rate at each edge and
random destinations. File transfer size was modeled with a
Pareto distribution process with a minimum size of 2 Mbytes.
Using this set of metrics, it was possible to vary the TCP
arrival rate and/or the mean file size, to obtain measurements
with a different number of simultaneous active flows.

In what follows, we consider a buffer-less OBS network
employing full wavelength conversion, where burst
reservations are performed using JET signaling protocol. The
modeled OBS network supports two classes of service. One
high priority / low latency class for the transmission of
“critical” TCP segments (as defined in previous section) and
one normal class for the bulk of TCP traffic. The burst
assembly process is performed in the OBS network’s ingress
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nodes, using a timer-based aggregation algorithm as described
in Section II. Packets from different classes arriving at the
ingress node are assigned to distinct burst assembly queues,
according to their congestion window and TCP state and are
never mixed in the same burst. Since TCP protocol does not
offer an option to access state information such as congestion
window and TCP state, which are necessary for the proposed
burst assembly and scheduling schemes, the ns-2 TCP
protocol implementation had to be modified. Our approach
was to modify TCPAgent class, so as to write cwnd and
ssthresh values (as described in [5]) to the TCP packet
headers. Of course this approach requires modifications to the
TCP stack and is not viable for real-world adoption. However
it is possible to estimate this information indirectly, by
analyzing TCP traffic patterns. The cwnd and ssthresh fields
are processed by the burstifier, for classifying packets to the
normal or low latency class.

In the experiments carried out, the steady state congestion
window was computed using Eq. (3). This formula uses as
input the burst loss ratio and number of segments per burst
(depending on the access rate and the segment size of TCP
flows), to compute the steady state TCP window. For the
current network setup, and given that the input load is not
varied, the steady state window size was computed once, and
kept constant to the value of 120. In real world applications,
an appropriate feedback system is envisioned, which will be
able to dynamically make approximations of steady state
window of each TCP flow individually.

C. Numerical Results

In this section, we will provide numerical results obtained
through simulation, regarding the performance of the proposed
TCP-aware scheduling scheme. Figure 4 shows the
performance of PLAUC-VF (in terms of packet loss ratio), for
two priority classes at high load conditions. We can see that
PLAUC-VF can effectively provide class separation, ensuring
a relatively low packet loss ratio for the high priority class. It
must be noted here, that preemptions in high load conditions
can in fact increase the burst loss ratio of the low priority class
and potentially cause starvation. However, this is not the case
in the scenario modeled here. Since only some of the TCP
segments are marked as critical for enhancing TCP
throughput, only these are allowed to enter the high priority
class (it was found to account for less than 10% of the total
TCP traffic). In fact, it was measured that the effect of
preemptions to normal priority class were measured to be
negligible.

In what follows, average throughput is used as a
performance metric for TCP traffic, since packet loss ratio is
not uniform in all priority classes due to preemptions, and so it
is not indicative of TCP steady state performance. In the
proposed scheme we favor the forwarding of certain TCP
segments that are marked as critical for maximizing
throughput and achieving fairness. Figure 5 shows the average
TCP throughput for a large sample of TCP flows, for 6
different assembly schemes, by keeping the input load
constant. A selection of 3 possible assembly timers was
chosen for the low-latency (high priority) traffic, that is 1ms,
2ms and 4ms timers and a selection of 2 timers for the normal



priority class, that is 4ms and 8ms. Their combination
provides in total 6 combinations, while the combination of
4ms/4ms actually corresponds to one class burstifier. On our
network setup, optimal performance was achieved with the
selection of 2ms timer for the high priority class, and 4ms
timer for the normal priority class, yielding an average
throughput of SOMbps. A similar performance was achieved
with the 2ms/8ms combination yielding an average throughput
of 46Mbps. The 1ms timer was found to generate a large
number of small bursts, increasing contention, and thus the
Ims/4ms system exhibited a lower average throughput of
40Mbps.
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Figure 4: Packet loss ratio of two priority classes (PLAUC-VF) Low priority
(CL1) and high priority (CL2).

It must be noted here that all the multi-class assembly
schemes clearly outperformed the single assembly class
scheme, which averaged at 35Mbps. This is attributed to the
fact that the small assembly timer allows short lived TCP
connections to quickly develop a large congestion window,
while being at the slow start phase. When their TCP window
becomes large, this short timer unnecessarily delays segment
transmission, clipping DFL gain.

With respect to fairness and how bandwidth is distributed
to TCP flows, Table II, shows the standard deviation of TCP
throughput measured at different assembly schemes. It can be
seen that the 2ms/4ms combination of timers also ensures the
highest degree of fairness.

Table II: Standard deviation of TCP throughput for different multi class
assembly schemes.

Timer 1(ms) Timer 2(ms) stdv
1 4 17
2 4 15
2 8 17
4 4 18
8 8 18

In order to further elaborate on our findings, we have
measured the time that a TCP source needs for its window to
reach the steady state value. Figure 6 shows the window
evolution for different timers. With the selection of 1ms timer,
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the time it takes for the TCP window to reach W, =120
segments is 90ms, while for the 4ms and 8ms timer this time
increases to 110ms and 133ms respectively.

IV. CONCLUSIONS

In this work, we proposed a new TCP-aware burst
assembly and burst scheduling scheme. The combing scheme
utilizes a high priority / low latency class, to be used by TCP
packets that are marked as critical for TCP throughput
evolution. We sustained our claims through simulation
experiments and with references to a well established TCP
model. It was found that the combined scheme can achieve
significant performance advantages, enhancing average TCP
throughput and sustaining fairness among all active flows.
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Figure 5: TCP throughput (in Mbps) for different assembly timer
combinations.
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Figure 6: TCP window evolution for different Tmax values.
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